Abstract

The modelling of a clutch in a power train transmission is a delicate process because of its non-linear behaviour. Two different states have to be taken into account: when the clutch is locked and when the clutch is slipping. Moreover the clutch has often to be controlled automatically in parallel hybrid electric vehicles (HEVs). An energetic macroscopic representation (EMR) of a clutch system has been developed. Both clutch states are genuinely taken into account in a physical way. In this article, EMR leads to organise the control scheme of the clutch system using an inversion methodology. An experimental validation is provided on a conventional vehicle before being implemented on parallel HEVs. Experimental results are provided to validate the clutch model and the inversion-based control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.