Abstract
The thermal infrared data of Fengyun 4A (FY-4A) geostationary meteorological satellite can be used to retrieve hourly land surface temperature (LST). In this paper, seven candidate algorithms are compared and evaluated. The Ulivieri (1985) algorithm is determined to be optimal for the algorithm of FY-4A LST official products. The refined algorithm coefficients for distinguishing dry and moist atmosphere were established for daytime and nighttime, respectively. Then, FY-4A LST official products under clear-sky conditions are produced. The validation results show that: (1) Compared with in-situ measured LST data at the HeBi crop measurement network, the root mean square errors (RMSE) were 2.139 and 2.447 K. Compared with in-situ measured LST data at Naqu alpine meadow site of Tibet plateau, the RMSE was 2.86 K. (2) When compared with the MODIS LST product, the RMSE was 1.64, 2.17, 2.6, and 1.73 K in March, July, October, and December, respectively. By the bias long-time change at a single site, RMSE of the XLHT (city) and GZH (desert) sites were 2.735 and 2.97 K, respectively. Overall, the preferred algorithm exhibits good accuracy and meets the required accuracy of the FY-4A mission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.