Abstract

Antiferromagnetic Mn3Ir, which is widely employed in exchange-biased applications, has attracted much attention recently due to its predicted and subsequently observed large spin Hall effect, therefore increasing its potential for spintronic devices in place of conventional paramagnetic 5d spin Hall metals. (Pt, Ta and W) Via the electrical detection of ferromagnetic resonance, we study a series of exchange biased NiFe/MnIr films for various MnIr thicknesses. In these systems, spin-pumped spin currents from NiFe are converted into dc voltages within MnIr via the inverse spin Hall effect (ISHE), which mixes with spin rectification voltages generated from NiFe. Through angular measurements, we separate these different voltage contributions to qualitatively detect non-zero ISHE in MnIr, which coexists with a non-zero unidirectional anisotropy. We find significant extrinsic damping contributions which prevent the accurate quantification of spin pumping-induced ISHE in MnIr films. The results show that spin currents may propagate and dissipate in MnIr films through ISHE in the presence of exchange bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.