Abstract
Since the Jost solutions of the derivative nonlinear Schrödinger equation do not tend to the free Jost solutions, when the spectral parameter tends to infinity(|λ| → ∞), the usual inverse scattering transform (IST) must be revised. If we take the parameter κ = λ−1 as the basic parameter, the Jost solutions in the limit of |κ| → ∞ do tend to the free Jost solutions, hence the usual procedure to construct the equations of IST in κ-plane remains effective. After we derive the equation of IST in terms of κ, we can obtain the equation of IST in λ-plane by the simple change of parameters λ = κ−1. The procedure to derive the equation of IST is reasonable, and attention is never paid to the function W(x) introduced by the revisions of Kaup and Newell. Therefore, the revision of Kaup and Newell can be avoided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have