Abstract

We solve the large deviations of the Kardar-Parisi-Zhang (KPZ) equation in one dimension at short time by introducing an approach which combines field theoretical, probabilistic, and integrable techniques. We expand the program of the weak noise theory, which maps the large deviations onto a nonlinear hydrodynamic problem, and unveil its complete solvability through a connection to the integrability of the Zakharov-Shabat system. Exact solutions, depending on the initial condition of the KPZ equation, are obtained using the inverse scattering method and a Fredholm determinant framework recently developed. These results, explicit in the case of the droplet geometry, open the path to obtain the complete large deviations for general initial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call