Abstract

We establish a large deviation principle for the Kardar-Parisi-Zhang (KPZ) equation, providing precise control over the left tail of the height distribution for narrow wedge initial condition. Our analysis exploits an exact connection between the KPZ one-point distribution and the Airy point process-an infinite particle Coulomb gas that arises at the spectral edge in random matrix theory. We develop the large deviation principle for the Airy point process and use it to compute, in a straightforward and assumption-free manner, the KPZ large deviation rate function in terms of an electrostatic problem (whose solution we evaluate). This method also applies to the half-space KPZ equation, showing that its rate function is half of the full-space rate function. In addition to these long-time estimates, we provide rigorous proof of finite-time tail bounds on the KPZ distribution, which demonstrate a crossover between exponential decay with exponent 3 (in the shallow left tail) to exponent 5/2 (in the deep left tail). The full-space KPZ rate function agrees with the one computed in Sasorov etal. [J. Stat. Mech. (2017) 063203JSMTC61742-546810.1088/1742-5468/aa73f8] via a WKB approximation analysis of a nonlocal, nonlinear integrodifferential equation generalizing Painlevé II which Amir etal. [Commun. Pure Appl. Math. 64, 466 (2011)CPMAMV0010-364010.1002/cpa.20347] related to the KPZ one-point distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.