Abstract

Under investigation in this letter is a mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation which can be considered as the simplest model to approximate the dynamics of weakly nonlinear and dispersive waves, taking into account the self-steepening effect. The inverse scattering transform under the zero boundary conditions and analytical scattering coefficients with an arbitrary number of simple and double zeros is detailedly discussed. Particularly, the inverse problem is solved by the study of a matrix Riemann–Hilbert problem. As a consequence, we present the general solution for the potential, and explicit expression for the reflectionless potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.