Abstract

Lighting design is an essential process in computer cinematography, games, architectural design and various other applications for correctly illuminating or highlighting parts of a scene and enhancing storytelling. When targeting specific illumination goals and constraints, this process can be tedious and counter-intuitive even for experienced users and thus automatic, goal-driven methods have emerged for the estimation of a lighting configuration to match the desired result. We present a general automatic approach to such an inverse lighting design problem, where the number of light sources along with their position and emittance are computed given a set of user-specified lighting goals. To this end, we employ a special hierarchical light clustering that operates in the lighting goal coverage domain and overcomes limitations of previous approaches in environments with high occlusion or structural complexity. Our approach is independent of the underlying light transport model and can quickly converge to usable solutions. We validate our results and provide comparative evaluation with the current state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.