Abstract

Modeling the cardiac conduction system is a challenging problem in the context of computational cardiac electrophysiology. Its ventricular section, the Purkinje system, is responsible for triggering tissue electrical activation at discrete terminal locations, which subsequently spreads throughout the ventricles. In this paper, we present an algorithm that is capable of estimating the location of the Purkinje system triggering points from a set of random measurements on tissue. We present the properties and the performance of the algorithm under controlled synthetic scenarios. Results show that the method is capable of locating most of the triggering points in scenarios with a fair ratio between terminals and measurements. When the ratio is low, the method can locate the terminals with major impact in the overall activation map. Mean absolute errors obtained indicate that solutions provided by the algorithm are useful to accurately simulate a complete patient ventricular activation map. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.