Abstract
Identification of location and magnitude of impact forces on a rectangular carbon fibre–epoxy honeycomb composite panel has been experimentally investigated through an inverse approach. The dynamic signals captured by a single piezoelectric (PZT) sensor installed on the panel remotely from the impact locations are utilized to identify the impact forces generated by an instrumented hammer. A number of potential impact locations on the panel are assumed to be known a priori. An actual impact is then occurred at one or two of these locations. The objective is to simultaneously identify the location and magnitude of the impact forces using the PZT sensor. The problem is solved through minimization of an extended matrix form of the convolution integral incorporating linear superposition of the responses due to impact at different locations. The under-determined problem is ill-posed and is regularized by Tikhonov and generalized cross validation methods. It is revealed that impact forces occurred at any location among four possible locations can be well identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.