Abstract

The traditional design process for aluminium alloys has primarily relied upon iterative alloy production and testing, which can be time intensive and expensive. Machine learning has recently been demonstrated to have promise in predicting alloy properties based on the inputs of alloy composition and alloy processing conditions. In the search for optimal alloy concentrations that meet desired properties, as the search space expands, the optimisation process can become more time intensive and computationally expensive, depending on the methodology used. We propose a faster workflow for inverse alloy design by using multi-target machine-learning models. We train a random forest regressor to predict the concentration of alloying elements and a random forest classifier to determine the processing condition. We further analysed the inverse model and validated findings against alloys reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.