Abstract

Differences in morphological or ecological traits expressed by exotic species between their native and non-native ranges are often interpreted as evidence for adaptation to new conditions in the non-native ranges. In turn this adaptation is often hypothesized to contribute to the successful invasion of these species. There is good evidence for rapid evolution by many exotic invasives, but the extent to which these evolutionary changes actually drive invasiveness is unclear. One approach to resolving the relationship between adaptive responses and successful invasion is to compare traits between populations from the native and non-native ranges for both exotic invaders and congeners that are exotic but not invasive. We compared a suite of morphological traits that are commonly tested in the literature in the context of invasion for three very closely related species of Centaurea, all of which are sympatric in the same native and non-native ranges in Europe and North America. Of these, C. solstitialis is highly invasive whereas C. calcitrapa and C. sulphurea are not. For all three species, plants from non-native populations showed similar shifts in key traits that have been identified in other studies as important putative adaptive responses to post-introduction invasion. For example, for all three species plants from populations in non-native ranges were (i) larger and (ii) produced seeds that germinated at higher rates. In fact, the non-invasive C. calcitrapa showed the strongest trait shift between ranges. Centaurea solstitialis was the only species for which plants from the non-native range increased allocation to defensive spines, and allocated proportionally less resources to reproduction, patterns contrary to what would be predicted by theory and other empirical studies to enhance invasion. Our results suggest caution when interpreting the commonly observed increase in size and reproductive capacity as factors that cause exotics to become invaders.

Highlights

  • Many exotic organisms become much more abundant and have greater impact on other species in their non-native than in their native ranges [1], [2]

  • The combination of both approaches: 1) the study of exotic invasive and exotic non-invasive species, and 2) studying them in both their native and non-native ranges, has a great deal of potential to shed light on traits that might be important for invasive success and, perhaps more importantly, which adaptive trait shifts between native and non-native ranges may contribute the most to an exotic species evolving in a way to become more invasive [19]

  • The non-invasive C. calcitrapa produced the highest number of capitula per plant, followed by C. solstitialis and by C. sulphurea (Fig. 2A; Fspecies = 43.84; df = 2,42; P,0.001; Tukey’s post hoc P,0.001 for all species pairs)

Read more

Summary

Introduction

Many exotic organisms become much more abundant and have greater impact on other species in their non-native than in their native ranges [1], [2] Many of these invasive species have been shown to evolve different trait expression in their non-native ranges [3,4,5]. These changes can be due to adaptation, genetic drift, hybridization and/or founder effects [6] and have the potential to contribute substantially to invasion. Whether these changes cause invasive success is speculative. The combination of both approaches: 1) the study of exotic invasive and exotic non-invasive species, and 2) studying them in both their native and non-native ranges, has a great deal of potential to shed light on traits that might be important for invasive success and, perhaps more importantly, which adaptive trait shifts between native and non-native ranges may contribute the most to an exotic species evolving in a way to become more invasive [19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call