Abstract
We continue the work of [1, 2, 3] by analyzing the equivalence relation of bi-embeddability on various classes of countable planes, most notably the class of countable non-Desarguesian projective planes. We use constructions of the author from [13] to show that these equivalence relations are invariantly universal, in the sense of [3], and thus in particular complete analytic. We also introduce a new kind of Borel reducibility relation for standard Borel G-spaces, which requires the preservation of stabilizers, and explain its connection with the notion of full embeddings commonly considered in category theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.