Abstract

The drag-reducing properties of polysaccharides from marine microalgae were investigated. They were compared to two drag-reducing additives studied extensively in the past, synthetic poly(ethylene) oxide, one of the most effective drag-reducing additives; and Xanthan Gum, another biopolymer often considered a model polymer for chemical and rheological research. Compared to Xanthan Gum, the most effective polymers from our microalgae show a higher drag-reducing efficiency in terms of necessary concentration to achieve a given level of drag reduction. In addition, they show a striking Type-B drag reduction behavior, which may be a very useful quality in most drag reduction applications, thanks to the independence of the drag reduction level on flow conditions such as velocity, shear stress, and tube diameter. With these polymers from microalgae we did not see evidence of Type-A behavior over the wide range of conditions studied (including pipe diameters up to 52 mm). Importantly, this suggests that the Drag Reduction coefficient in pipe flow for ideal drag-reducing solutions such as the polysaccharides investigated here is invariant at a given additive concentration of flow or solution parameters like ionic strength and can be used as a solution property to predict its drag reduction effectiveness over a wide range of conditions. On the contrary, Xanthan Gum showed evidence of both Type-A behavior in large diameter pipes and Type-B behavior in smaller ones. The polymers from microalgae also showed high resistance to degradation. Considering that these microalgae are very effective producers of polysaccharides (both extracellular and intracellular), they appear to be very promising additives for drag reduction applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.