Abstract

We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, that unifies and improves a number of previous results. In the vector-valued case, the results are new even for one complex variable. As a concrete application in several variables, we consider the Bergman space on a strictly pseudo-convex domain, and we improve previous results (assuming C ∞ -boundary) to the case of C 2 -boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.