Abstract
Bishop operators Tα acting on L2[0,1) were proposed by E. Bishop in the fifties as possible operators which might entail counterexamples for the Invariant Subspace Problem. We prove that all the Bishop operators are biquasitriangular and, derive as a consequence that they are norm limits of nilpotent operators. Moreover, by means of arithmetical techniques along with a theorem of Atzmon, the set of irrationals α∈(0,1) for which Tα is known to possess non-trivial closed invariant subspaces is considerably enlarged, extending previous results by Davie [11], MacDonald [21] and Flattot [14]. Furthermore, we essentially show that when our approach fails to produce invariant subspaces it is actually because Atzmon's Theorem cannot be applied. Finally, upon applying arithmetical bounds obtained, we deduce local spectral properties of Bishop operators proving, in particular, that neither of them satisfy Dunford's property (C).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have