Abstract

The usual assumption in multivariate hypothesis testing is that the sample consists of n independent, identically distributed Gaussian m-vectors. In this paper this assumption is weakened by considering a class of distributions for which the vector observations are not necessarily either Gaussian or independent. This class contains the elliptically symmetric laws with densities of the form f( X( n × m)) = ψ[tr( X − M)′ ( X − M)Σ −1]. For testing the equality of k scale matrices and for the sphericity hypothesis it is shown, by using the structure of the underlying distribution rather than any specific form of the density, that the usual invariant normal-theory tests are exactly robust, for both the null and non-null cases, under this wider class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.