Abstract
A quadratic Lie algebra is a Lie algebra endowed with a symmetric, invariant and nondegenerate bilinear form; such a bilinear form is called an invariant metric. The aim of this work is to describe the general structure of those central extensions of quadratic Lie algebras which in turn have invariant metrics. The structure is such that the central extensions can be described algebraically in terms of the original quadratic Lie algebra, and geometrically in terms of the direct sum decompositions that the invariant metrics involved give rise to.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.