Abstract
This article addresses the problem of checking invariant properties for a large class of symbolic transition systems defined by a combination of SMT theories and quantifiers. State variables can be functions from an uninterpreted sort (finite but unbounded) to an interpreted sort, such as the integers under the theory of linear arithmetic. This formalism is very expressive and can be used for modeling parameterized systems, array-manipulating programs, and more. We propose two algorithms for finding universal inductive invariants for such systems. The first algorithm combines an IC3-style loop with a form of implicit predicate abstraction to construct an invariant in an incremental manner. The second algorithm constructs an under-approximation of the original problem and searches for a formula which is an inductive invariant for this case; then, the invariant is generalized to the original case and checked with a portfolio of techniques. We have implemented the two algorithms and conducted an extensive experimental evaluation, considering various benchmarks and different tools from the literature. As far as we know, our method is the first capable of handling in a large class of systems in a uniform way. The experiment shows that both algorithms are competitive with the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.