Abstract

ObjectiveInula britannica is a traditional Chinese medicinal and functional food with various effects such as anti-liver injury, hypoglycemia, antioxidants, and anti-tumor. This study aimed to investigate the protective effects and mechanisms of the ethanolic extract of I. britannica (EEIB) on alcohol-induced liver injury in mice. MethodsFifty-six female C57BL/6 mice were randomly divided into seven groups: control group (Con), ethanol feeding model group (EtOH), Silibinin positive treatment group (EtOH + Silibinin 100 mg/kg), EEIB treatment group (EtOH + EEIB 100, 200, and 400 mg/kg), and EEIB control group (EEIB 400 mg/kg). The National Institute on Alcohol Abuse and Alcoholism (NIAAA) ethanol-feeding model was used to study the effects of EEIB on alcohol-induced lipid metabolism, inflammation, oxidative stress, and fibril formation in mice by histopathological evaluation, immunofluorescence staining, Western blotting analysis and molecular docking. ResultsEEIB reduced liver indices to different degrees to normal levels and improved liver morphology in mice. EEIB inhibited alcohol-induced liver injury by activating the sirtuin 1 (SIRT1)-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in the liver of alcohol-fed mice, in which sesquiterpenes may be the potential active ingredients, and also down-regulated the expression of alpha-smooth muscle actin (α-SMA), collagen alpha (Collagen I), tumor necrosis factor-alpha (TNF-α) and attenuated alcohol-induced liver injury. In addition, EEIB also activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which alleviated alcohol-induced liver injury at the level of oxidative stress. Notably, the EEIB control group demonstrated that EEIB had no toxic effects in mice. EEIB reduced alcoholic liver injury in a dose-dependent manner. Its therapeutic efficacy was comparable to, if not better than, that of Silibinin when administered at a dose of 400 mg/kg. ConclusionEEIB showed significant therapeutic effects on alcohol-induced liver injury in mice, and its mechanism of action was related to the SIRT1-AMPK, nuclear factor-kappa B (NF-κB), and Nrf2 signaling pathways, in which sesquiterpenes may be the potential active ingredients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call