Abstract

The article presents the concept of application of a multiphase matrix converter (MMC)-based device working as a phase-shifting control device in a power system. A matrix M × M multiphase converter is a simple structure incorporating M × M bidirectional switches, connecting M input phases to M output phases (a square structure is used). The device, in this research and under proposed control, is able to build M output sinusoidal-shape phases (desired output) from parts of input voltages. The proposed MMC-based device can be considered as a new flexible AC transmission system (FACTS) apparatus. Three basic control systems that enabled the creation of output waveforms as the combination of input ones were presented. Both 6 × 6 and 12 × 12 matrix structures were introduced, since 3 × 6 and 3 × 12 transformers are already in use. The mathematical, Simulink, and laboratory models were built to extract characteristic features of the MMC. The chosen “area-based” control procedure was based on finding a common point of area representing a certain switch (connecting a certain input and a certain output) and a time-dependent trajectory. Practical application of the MMC in a power system involves not only MMC analysis, but also the study of application requirements, possible converter topologies, and the development of new, reliable control algorithms. Particular consideration was given to the simplicity of the control and the analysis of the converter properties. The proposed control procedure did not use the PWM technique, but created output in similar way to a multilevel converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call