Abstract

Two reconnection problems are considered. The first problem concerns global physics. The plasma in the global reconnection region is in magnetostatic equilibrium. It is shown that this equilibrium can be uniquely characterized by a set of constraints. During reconnection and independently of the local reconnection physics, these constraints can be uniquely evolved from any initial state. The second problem concerns Petschek reconnection. Petschek’s model for fast reconnection, which is governed by resistive MHD equations with constant resistivity is not validated by numerical simulations. Malyshkin et al. [Phys. Plasmas 12, 102920 (2005)], showed that the reason for the discrepancy is that Petschek did not employ Ohm’s law throughout the local diffusion region, but only at the X-point. A derivation of Petschek reconnection, including Ohm’s law throughout the entire diffusion region, removes the discrepancy. This derivation is based largely on Petschek’s original 1964 calculation [in AAS-NASA Symposium on Solar Flares (National Aeronautics and Space Administration, Washington, D.C., 1964), NASA SP50, p. 425]. A useful physical interpretation of the role which Ohm’s law plays in the diffusion region is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.