Abstract

The zinc finger protein GATA-1 functions in a concentration-dependent fashion to activate the transcription of erythroid and megakaryocytic genes. Less is understood, however, regarding factors that regulate the GATA-1 gene. Presently elements within intron 1 are shown to markedly affect its erythroid-restricted transcription. Within a full-length 6. 8-kilobase GATA-1 gene construct (G6.8-Luc) the deletion of a central subdomain of intron 1 inhibited transcription >/=10-fold in transiently transfected erythroid SKT6 cells, and likewise inhibited high-level transcription in erythroid FDCW2ER-GATA1 cells. In parental myeloid FDCER cells, however, low-level transcription was largely unaffected by intron 1 deletions. Within intron 1, repeated GATA and Ap1 consensus elements in a central region are described which when linked directly to reporter cassettes promote transcription in erythroid SKT6 and FDCER-GATA1 cells at high rates. Moreover, GATA-1 activated transcription from this subdomain in 293 cells, and in SKT6 cells this subdomain footprinted in vivo. For stably integrated GFP reporter constructs in erythroid SKT6 cells, corroborating results were obtained. Deletion of intronic GATA and Ap1 motifs abrogated the activity of G6.8-pEGFP; activity was decreased by 43 and 56%, respectively, by the deletion of either motif; and the above 1800-base pair region of intron 1 per se was transcribed at rates uniformly greater than G6.8-pEGFP. Also described is the differential utilization of exons 1a and 1b among primary erythromegakaryocytic and myeloid cells.

Highlights

  • GATA factors are a family of nuclear zinc finger DNA-binding proteins that hierarchically regulate the expression of lineage-specific target genes [1,2,3,4,5,6]

  • Extended GATA-1 gene ␤-galactosidase reporter constructs recently have been tested in vivo, and an upsteam activating element (UAE) positioned approximately 2600 bp upstream of exon 1 was discovered to be required for efficient expression in erythroid and megakaryocytic cells [23,24,25]

  • In primary analyses of GATA-1 gene subdomains that affect erythroid-specific transcription, the deletion constructs illustrated in Fig. 1 were prepared from a parent construct, G6.8Luc, and assayed for activity in erythroid SKT6 cells

Read more

Summary

Introduction

GATA factors are a family of nuclear zinc finger DNA-binding proteins that hierarchically regulate the expression of lineage-specific target genes [1,2,3,4,5,6]. Within intron 1, repeated GATA and Ap1 consensus elements in a central region are described which when linked directly to reporter cassettes promote transcription in erythroid SKT6 and FDCER-GATA1 cells at high rates.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.