Abstract

The El Niño–Southern Oscillation (ENSO) is a coupled ocean–atmosphere phenomena that has a worldwide impact on climate. An aperiodic phenomena that reoccurs every 2 to 7 years, the ENSO is second only to seasonal variability in driving worldwide weather patterns. As Greenland notes in chapter 6, the term “quasi-quintennial” is chosen to recognize that climatic events other than ENSO-related events might occur at this timescale, although it is widely recognized that ENSO contributes the lion’s share of the higher frequency variability in paleorecords of the past several thousand years. In this section, we consider variability with cycles of 2 to 7 years and the resulting ecological response. Although we emphasize the ENSO timescale in this section, there is growing evidence that this phenomena is neither spatially nor temporally stable over longer time periods. Indeed, Allan (2000) suggests the ENSO climatic variability must be viewed within the context of climate fluctuations at decadal to interdecadal timescales, which often modulate the higher frequency ENSO variability. As a consequence, results in this and the next section often display overlapping patterns of variability, and their separation is not sharply defined. An important theme in this section is the worldwide influence of ENSO-related climate variability. Greenland (chapter 6) provides an LTER network overview with an analysis of ENSO-related variability of temperature and precipitation records for many LTER sites from the Arctic to the Antarctic. He discusses the general nature of ENSO and its climatic effects, summarizes previous climate-related work in the LTER network, and provides a cross-site analysis of the correlations between the Southern Oscillation Index (SOI) and temperature and precipitation at LTER sites. His results are consistent with the expected patterns of the geography of ENSO effects on the climate. Greenland’s cross-site analysis provides the basis for studying climate variability and ecosystem response within the context of the series of framework questions that form an underlying theme for this volume. Brazel and Ellis (chapter 7) provide an excellent analysis of climate-related parameters within the context of ENSO indices. Reporting on the Central Arizona and Phoenix (CAP) LTER urban-rural ecosystem, these authors provide a comprehensive analysis linking water-related parameters to climate forcing, as indicated by these indexes. Their studies show a strong connection between ENSO and winter moisture in Arizona, perhaps making it possible to forecast impending conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call