Abstract

The basic principles of nuclear magnetic resonance (NMR) are presented in an elementary form using classical and elementary quantum mechanics and the experimental technique 1s explained. The motion of the magnetization by r.f. pulses, free induction decay and spectrum, transverse and longitudinal relaxation, local field and spin echo are described and the effects of molecular motion are discussed. The concepts of spin temperature and spin diffusion are presented and the advantage of using quadrupole nuclei is stressed. Finally, the specific problems of NMR in interface studies are considered and a typical example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call