Abstract

Associative neural memories are models of biological phenomena that allow for the storage of pattern associations and the retrieval of the desired output pattern upon presentation of a possibly noisy or incomplete version of an input pattern. In this paper, we introduce implicative fuzzy associative memories (IFAM's), a class of associative neural memories models based on fuzzy set theory. An IFAM consists of a network of completely interconnected Pedrycz logic neurons whose connection weights are determined by the minimum of implications of presynaptic and postsynaptic activations. We present a series of results for autoassociative models including one pass convergence, unlimited storage capacity and tolerance with respect to eroded patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.