Abstract
AbstractTo set the stage for our study of ultralight bosonic dark matter (UBDM), we review the evidence for the existence of dark matter: galactic and stellar dynamics, gravitational lensing studies, measurements of the cosmic microwave background radiation (CMB), surveys of the large-scale structure of the universe, and the observed abundance of light elements. This diverse array of observational evidence informs what we know about dark matter: its universal abundance, its spatial and velocity distribution, and that its explanation involves physics beyond the Standard Model. But what we know about dark matter is far outweighed by what we do not know. We examine UBDM in the context of several of the most prominent alternative hypotheses for the nature of dark matter: weakly interacting massive particles (WIMPs), sterile neutrinos, massive astrophysical compact halo objects (MACHOs), and primordial black holes (PBHs). Finally we examine some of the key general characteristics of UBDM, including its wavelike nature, coherence properties, and couplings to Standard Model particles and fields.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have