Abstract

In this paper, we optimize a WO3\Al2O3 bilayer serving as the electrolyte of a conductive bridge RAM device using a Cu-based supply layer. By introducing a WO3 layer formed by thermal oxidation of a W plug, the hourglass shape of the conductive filament is desirably controlled, enabling excellent switching behavior. We demonstrate a clear improvement of the microstructure and density of the WO3 layer by increasing the oxidation time and temperature, resulting in a strong increase of the high-resistance-state breakdown voltage. The high quality WO3 microstructure allows thus the use of a larger reset pulse amplitude resulting both in larger memory window and failure-free write cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call