Abstract

We developed and characterized a recombinant herpes simplex virus vector and used it to introduce the complementary DNA encoding glutamate receptor subunit 1 flip into postmitotic motor neurons. Infection of purified motor neurons in vitro with this vector resulted in selective, high-level expression of glutamate receptor subunit 1 immunoreactivity in nearly 100% of the neurons. Patch-clamp experiments demonstrated that the protein product of the glutamate receptor subunit 1 flip transgene assembles into functional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor channels. Herpes simplex virus-glutamate receptor subunit 1 flip was introduced into spinal cord cells by direct injection into the ventral horn and selectively into motor neurons by sciatic nerve injection. High levels of expression were sustained for at least one week and were accompanied by changes in the ionic permeability of AMPA receptors in transgene-expressing neurons. Throughout the first week of infection, there was little evidence for toxicity. Herpes simplex virus provides a versatile tool for manipulating the glutamate receptor phenotype of postmitotic neurons and will permit study of the role of individual glutamate receptor subunits in neuronal physiology and pathophysiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.