Abstract

BackgroundOncolytic herpes simplex virus (HSV) vectors that specifically replicate in and kill tumor cells sparing normal cells are a promising cancer therapy. Traditionally, recombinant HSV vectors have been generated through homologous recombination between the HSV genome and a recombination plasmid, which usually requires laborious screening or selection and can take several months. Recent advances in bacterial artificial chromosome (BAC) technology have enabled cloning of the whole HSV genome as a BAC plasmid and subsequent manipulation in E. coli. Thus, we sought a method to generate recombinant oncolytic HSV vectors more easily and quickly using BAC technology.ResultsWe have developed an HSV-BAC system, termed the Flip-Flop HSV-BAC system, for the rapid generation of oncolytic HSV vectors. This system has the following features: (i) two site-specific recombinases, Cre and FLPe, are used sequentially to integrate desired sequences and to excise the BAC sequences, respectively; and (ii) the size of the HSV-BAC-insert genome exceeds the packaging limit of HSV so only correctly recombined virus grows efficiently. We applied this to the construction of an HSV-BAC plasmid that can be used for the generation of transcriptionally-targeted HSV vectors. BAC sequences were recombined into the UL39 gene of HSV ICP4-deletion mutant d120 to generate M24-BAC virus, from which HSV-BAC plasmid pM24-BAC was isolated. An ICP4 expression cassette driven by an exogenous promoter was re-introduced to pM24-BAC by Cre-mediated recombination and nearly pure preparations of recombinant virus were obtained typically in two weeks. Insertion of the ICP4 coding sequence alone did not restore viral replication and was only minimally better than an ICP4-null construct, whereas insertion of a CMVIE promoter-ICP4 transgene (bM24-CMV) efficiently drove viral replication. The levels of bM24-CMV replication in tumor cells varied considerably compared to hrR3 (UL39 mutant).ConclusionOur Flip-Flop HSV-BAC system enables rapid generation of HSV vectors carrying transgene inserts. By introducing a tumor-specific-promoter-driven ICP4 cassette into pM24-BAC using this system, one should be able to generate transcriptionally-targeted oncolytic HSV vectors. We believe this system will greatly facilitate the screening of a plethora of clinically useful tumor-specific promoters in the context of oncolytic HSV vectors.

Highlights

  • Oncolytic herpes simplex virus (HSV) vectors that replicate in and kill tumor cells sparing normal cells are a promising cancer therapy

  • The two starting plasmids for this system are the prototype HSV-bacterial artificial chromosome (BAC) clone, pM24-BAC, and the promoterless shuttle vector pFLS-ICP4, both of which carry one loxP and one FRT recombination site. pM24-BAC contains the genome of d120 virus with the HSV ICP6 gene (UL39) disrupted by insertion of the BAC cassette (Fig 2a)

  • The shuttle plasmid pFLS-ICP4 contains the ICP4 coding sequence (CDS) with a multiple cloning site (MCS) upstream so exogenous promoters can be inserted to drive ICP4 expression, the R6Kγ origin of replication, kanamycin resistance gene, LacZ marker gene, and a stuffer sequence derived from bacteriophage lambda (Fig 2b)

Read more

Summary

Introduction

Oncolytic herpes simplex virus (HSV) vectors that replicate in and kill tumor cells sparing normal cells are a promising cancer therapy. For the generation of new oncolytic vectors, insertion of exogenous genes or promoter sequences is often performed to enhance anti-tumor activity or tumor-selectivity of the vector An example of the former is insertion of an interleukin gene and of the latter, insertion of a tumor- or tissue-specific promoter [3,4]. Recombinant HSV vectors have been generated through homologous recombination by co-transfecting mammalian cells with purified HSV DNA and a plasmid containing exogenous sequences flanked by viral sequences homologous to the insertion site. This method usually requires laborious screening or selection and can take several months. We sought a method to generate recombinant oncolytic HSV vectors more and quickly using BAC technology

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call