Abstract

In order to tune the mechanical properties of the Al2O3/GdAlO3 (GAP) eutectic ceramics, low energy GAP grain boundaries (GBs) were introduced into Al2O3/GAP eutectic ceramics. We prepared single-crystal Al2O3/bi-crystal GAP eutectic ceramics with the directional solidification technique, in which the Al2O3 was single-crystal, but the GAP was bi-crystal. The crystallographic orientation relationships between Al2O3 and GAP was determined as [101¯0] Al2O3 || [001] GAP-I || [11¯0]GAP-II, (112¯0) Al2O3 || (200) GAP-I, (112¯0)Al2O3 || (112) GAP-II, and (110) GAP-I || (110) GAP-II. Such GAP GB had ultra-low strain energy. The phase boundaries (PBs) strain energies are higher than that of the GAP GB. However, the difference in the interfacial strain energy between the two PBs was quite small. The reason for the successful preparation of single-crystal Al2O3/bi-crystal GAP eutectic ceramics was attributed to almost the same driving force requirements for the two PBs during solidification. We envisaged that the concept of interfacial structure design could open new pathways for high-performance materials design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.