Abstract

A method of estimating, in urban indoor environments, human exposure to particulate matter with aerodynamic diameter of less than 1 μm (PM1, also referred in the literature as fine-mode or nanometer (nm) particulate matter) is proposed. It defines a measure of exposure as a surface area concentration of PM1 and the means of its calculation. The calculation algorithm was constructed using statistical parameters of particulate matter lognormal distribution, with the use of Hatch-Choate equations and the Maynard method, and extended by the accumulation stage physics of PM1 fraction, including Eggersdorfer’s and Pratsinis’s findings. Introduction of structure and dynamics of fractal-like agglomerates into the calculation algorithm significantly increased estimation accuracy of surface area concentrations, in relation to the standard Maynard method, which calculates surface area concentrations of only spherical particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.