Abstract

Pine bark, a natural and renewable forest residue, was modified using a simple interfacial solid-phase chemical method to design a highly chemically reactive additive for urea-formaldehyde (UF) resin. The modification introduced carbonyl groups onto the bark surface during the glyoxal reaction at the bark-solid interface. Thermal properties, including curing temperatures, of UF, UFB, and UFGB were evaluated using DSC and DMA. Glyoxal modification of bark significantly influenced these properties, facilitating the crosslinking and curing of adhesives. Notably, plywood bonded with UFGB resin released approximately half as much formaldehyde (52.89 % less) compared to plywood bonded with UF resin, reducing from 1.38 to 0.65 mg/L. Additionally, the wet shear strength of plywood increased by 197.3 %, from 0.37 MPa to 1.10 MPa, exceeding the minimum requirement (0.7 MPa) defined by the China national standard (GB/T 17657–2013). The study presents a compelling case for the utilization of glyoxal-modified pine bark as a filler in UF adhesive for plywood manufacturing. The demonstrated improvements in plywood properties and formaldehyde emissions, along with the environmentally friendly nature of the approach, make it a promising avenue for sustainable plywood production. Further investigations into the underlying mechanisms and long-term performance are encouraged to solidify the potential of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.