Abstract
The well-stirred model (WSM) incorporating the fraction of unbound drug (fu) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (fD), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding fD values, respectively. On the other hand, fu only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating fD holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.