Abstract

Information measures, such as the entropy and the Kullback-Leibler (KL) divergence, are typically introduced using an abstract viewpoint based on a notion of surprise. Accordingly, the entropy of a given random variable (rv) is larger if its realization, when revealed, is on average more surprising (see, e.g., [1]-[3]). The goal of this lecture note is to describe a principled and intuitive introduction to information measures that builds on inference, i.e., estimation and hypothesis testing. Specifically, entropy and conditional entropy measures are defined using variational characterizations that can be interpreted in terms of the minimum Bayes risk in an estimation problem. Divergence metrics are similarly described using variational expressions derived via mismatched estimation or binary hypothesis testing principles. The classical Shannon entropy and the KL divergence are recovered as special cases of more general families of information measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.