Abstract

Arranging similar structures in clusters is one of the typical tasks of modern Chemoinformatics with high impact in HTS follow-up, generation of structure activity relationships (SAR) and selection of starting points for compound optimisation. Methods for cluster generation are as diverse as the structures which they are applied to [1], may they be e.g. similarity- or substructure-based. Typically, medicinal chemists tend to orientate themselves in structure subsets like clusters with the help of substructures, so-called scaffolds, which intuitively characterise the structural relationships between the molecules of the subset. In the case of substructure-based clustering, well established methods are existing for the generation of Maximum Common Substructures (MCS) which are present in all members of the structure population or a defined proportion thereof [2]. But in the case of similarity-based clusters, such MCS may either not be existing for the required dataset proportion or the common substructure may be so small that it is no longer representative and therefore meaningless. The approach presented here allows the generation of MCS also for similarity-based clusters with a given inherent structural diversity. It does so by generating an MCS of reduced graphs in a first step, followed by mapping atom and bond indexes of this reduced MCS onto the full structures and aggregation of atom and bond information for each indexed atom/bond. In a final step, query features of the MDL SDF format (atom lists, query bonds) are utilized to map aggregated element and bond information onto the reduced MCS. As a result, fuzziness in atom and bond information is added to the MCS which, although still being fully database-searchable, is more meaningful for the characterisation of clusters as it can cover larger parts of the full structures than a conventional MCS could do. The approach was implemented in Pipeline Pilot™ for proof of concept but is general enough to be transferred to other technical platforms as well.

Highlights

  • Arranging similar structures in clusters is one of the typical tasks of modern Chemoinformatics with high impact in HTS follow-up, generation of structure activity relationships (SAR) and selection of starting points for compound optimisation

  • The approach presented here allows the generation of Maximum Common Substructures (MCS) for similarity-based clusters with a given inherent structural diversity

  • “fuzziness” in atom and bond information is added to the MCS which, still being fully database-searchable, is more meaningful for the characterisation of clusters as it can cover larger parts of the full structures than a conventional MCS could do

Read more

Summary

Introduction

Arranging similar structures in clusters is one of the typical tasks of modern Chemoinformatics with high impact in HTS follow-up, generation of structure activity relationships (SAR) and selection of starting points for compound optimisation.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.