Abstract
To propel electronic skin (e-skin) to the next level by integrating artificial intelligence features with advanced sensory capabilities, it is imperative to develop stretchable memory device technology. A stretchable memory device for e-skin must offer, in particular, long-term data storage while ensuring the security of personal information under any type of deformation. However, despite the significance of these needs, technology related to stretchable memory devices remains in its infancy. Here, we report an intrinsically stretchable floating gate (FG) polymer memory transistor. The device features a dual-stimuli (optical and electrical) writing system to prevent easy erasure of recorded data. An FG comprising an intermixture of Ag nanoparticles and elastomer and with proper energy-band alignment between the semiconductor and dielectric facilitated sustainable memory performance, while achieving a high memory on/off ratio (>105) and a long retention time (106 s) with the ability to withstand 50% uniaxial or 30% biaxial strain. In addition, our memory transistor exhibited high mechanical durability over multiple stretching cycles (1000 times), along with excellent environmental stability with respect to factors such as temperature, moisture, air, and delamination. Finally, we fabricated a 7 × 7 active-matrix memory transistor array for personalized storage of e-skin data and successfully demonstrated its functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.