Abstract

BackgroundProteins are composed of one or more amino acid chains and exhibit several structure levels. IDPs (intrinsically disordered proteins) represent a class of proteins that do not fold into any particular conformation and exist as dynamic ensembles in their native state. Due to their intrinsic adaptability, IDPs participate in many regulatory biological processes, including parasite immune escape. Using the information from trypanosomatids proteomes, we developed a pipeline for the identification, characterization and analysis of IDPs. The pipeline employs six disorder prediction methodologies and integrates structural and functional annotation information, subcellular location prediction and physicochemical properties. At the core of the IDP pipeline, there is a relational database that describes the protein disorder knowledge in a logically consistent manner.ResultsThe results obtained from the IDP pipeline showed that Leishmania and Trypanosoma species have approximately 70% and 55% IDPs, respectively. Our results indicate that IDPs in trypanosomatids contain disorder-promoting amino acids and order-promoting amino acids. The functional annotation analysis demonstrated enrichment of selected Gene Ontology terms. A relevant association was observed between the disordered residue numbers within predicted IDPs and their subcellular location, lack of transmembrane domains and lack of predicted function. We validated our computational findings with 2D electrophoresis designed for IDP identification and found that 100% of the identified protein spots were predicted in silico.ConclusionsBecause there is no pipeline or database addressing IDPs in trypanosomatids, the pipeline described here represents the first attempt to establish possible correlations between protein function and structural disorder in these eukaryotes. Interestingly, all significant associations detected in the contingency analysis were observed when the protein disorder content reached approximately 40%. The exploratory data analysis allowed us to develop hypotheses regarding the IDPs’ association with key biological features of these parasites, including transcription and transcriptional regulation, RNA processing and splicing, and cytoskeleton.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1100) contains supplementary material, which is available to authorized users.

Highlights

  • Proteins are composed of one or more amino acid chains and exhibit several structure levels

  • The predicted proteomes of the studied organisms were the only input to the Intrinsically disordered proteins (IDPs) pipeline; as a result, it generated a MySQL database with IDP characterization information, two files with the analysis of the results, and a set of directories containing the outputs from each algorithm

  • The developed IDP pipeline was applied to seven trypanosomatids proteomes (L. major, L. braziliensis, L. infantum, L. mexicana, L. tarentolae, T. cruzi and T. brucei)

Read more

Summary

Introduction

Proteins are composed of one or more amino acid chains and exhibit several structure levels. IDPs (intrinsically disordered proteins) represent a class of proteins that do not fold into any particular conformation and exist as dynamic ensembles in their native state. Due to their intrinsic adaptability, IDPs participate in many regulatory biological processes, including parasite immune escape. In the early 1990s, the existence of functionally active proteins lacking a stable conformation under physiological conditions was evidenced by several studies. These proteins, currently known as IDPs (intrinsically disordered proteins), were identified in both prokaryotes and eukaryotes, including mammals. Some authors have even suggested that intrinsic protein disorder may require a reassessment of the protein-structure-function paradigm [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.