Abstract

Organic materials are known for their variety of molecules. Methods to predict the parameters of organic photovoltaic (OPV) cells are required to avoid the time- and resource-consuming processes of manufacturing and testing OPVs. Usually, the open-circuit voltage (Uoc) is estimated as the difference between the ionization energy level of the electron donor molecule (Id) and the electron affinity level of the electron acceptor molecule (EAa). Various measurement methods are used to determine the energy level values of pure materials, which, when combined with energy level shifts due to the donor:acceptor interactions, make these estimations less precise. In this work, photoconductivity measurements were applied to the donor:acceptor films. Near threshold energy, the electron can be directly transferred from the donor to the acceptor molecule. The obtained charge transfer energy (ECT) shows the difference between Id and EAa in the film. This difference was compared to the Uoc value of an OPV made of the same donor:acceptor combination. We show that this approach provides less scattered results and a higher correlation coefficient compared to the Uoc estimation using energy level values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.