Abstract

The present paper is concerned with the analytical and numerical investigation of the transverse spatio-temporal instabilities in two-level broad-area lasers for the specific class-B case. We show that the two-level class-B broad-area laser tends to naturally operate in the filamentary state. This is revealed to be provided with two causes. First of them is related with the homogeneous output profile being intrinsically unstable due to the traveling-wave instability, independently from the boundary conditions. Secondly, high sensitivity to the boundaries of the pumping region was found for the commonly used top-hat-like profile leading to boundaries-induced filamentary dynamics. Spatio-temporal properties of both instability mechanisms are studied and their effects on the resulting laser dynamical behavior are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.