Abstract
We present a review, together with new results, of a universal forcing of oscillatory systems, termed 'rocking', which leads to the emergence of a phase bistability and to the kind of pattern formation associated with it, characterized by the presence of phase domains, phase spatial solitons and phase-bistable extended patterns. The effects of rocking are thus similar to those observed in the classic 2 : 1 resonance (the parametric resonance) of spatially extended systems of oscillators, which occurs under a spatially uniform, time-periodic forcing at twice the oscillations' frequency. The rocking, however, has a frequency close to that of the oscillations (it is a 1 : 1 resonant forcing) and hence is a good alternative to the parametric forcing when the latter is inefficient (e.g. in optics). The key ingredient is that the rocking amplitude is modulated either in time or in space, such that its sign alternates (exhibits π-phase jumps). We present new results concerning a paradigmatic nonlinear optical system (the two-level laser) and show that phase domains and dark-ring (phase) solitons replace the ubiquitous vortices that characterize the emission of free-running, broad area lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.