Abstract

Low-frequency membrane potential oscillations were induced in motoneurons (MNs) of isolated hemisected frog spinal cords during N-methyl-D-aspartate (NMDA) application. Oscillations required the presence of physiological Mg2+ and preincubation with strychnine, whereas incubation with bicuculline or phaclofen was not effective. Oscillations were evident in intracellular recordings from single MNs and simultaneous extracellular recordings from lumbar ventral roots. In Mg(2+)-free solution, MNs exhibited irregular transient membrane potential depolarizations that were blocked by D,L-2-amino-5-phosphonopentanoic acid (APV) but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Generation and maintenance of membrane potential oscillations required specific NMDA receptor activation. Oscillations were antagonized by APV but not by CNQX. Strychnine preincubation was required for NMDA to induce oscillations, but was not critical in maintaining them, because oscillations persisted after removal of strychnine. Therefore oscillations are suggested to be an inherent property of the spinal neuronal circuitry. Tetrodotoxin (TTX) blocked spike activity and had a bimodal effect on membrane potential oscillations. Oscillations initially were blocked by TTX, but reappeared spontaneously after 10-40 min. This suggests that maintenance of oscillations, once evoked, does not involve MN firing. Na+ entry through TTX-insensitive Na+ channels and/or NMDA receptor channels, trans-membrane Ca2+ flux, Ca2+ release from intracellular stores, and Ca2+ activated K+ channels were critical in controlling the amplitude and frequency of membrane potential oscillations. It is hypothesized that these unmasked intrinsic oscillations in adult frog spinal cord MNs may represent a premetamorphic spinal oscillator involved in tadpole swimming that becomes suppressed during metamorphosis as strychnine-sensitive inhibition becomes more pronounced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.