Abstract
Embryonic spinal cord motor neurons (MNs) can be maintained in vitro for weeks with a cocktail of trophic factors and muscle-derived factors under serum-containing conditions. Here we investigated the beneficial effects of muscle-derived factors in the form of muscle-conditioned medium (MCM) on the survival and neurite outgrowth of adult rat spinal cord MNs under serum-free conditions. Ventral horn dissociated cell cultures from the cervical enlargement were maintained in the presence of one or more of the following factors: brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), a cell permeant cyclic adenosine-3′,5′-monophosphate (cAMP) analog and MCM. The cell cultures were immunostained with several antibodies recognizing a general neuronal marker the microtubule-associated protein 2 (MAP2) and either one or more motor neuronal markers: the non-phosphorylated neurofilament heavy isoform (SMI32), the transcription factors HB9 and Islet-1 and the choline acetyl transferase. We found that treatment with MCM together with the cAMP analog was sufficient to promote selective survival and neurite outgrowth of adult spinal cord MNs. These conditions can be used to maintain adult spinal cord MNs in dissociated cultures for several weeks and may have therapeutic potential following spinal cord injury or motor neuropathies. More studies are necessary to evaluate how MCM and the cAMP analog act in synergy to promote the survival and neurite outgrowth of adult MNs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.