Abstract

Target dimension is important information in underwater target classification. An intrinsic mode characteristic extraction method in underwater cylindrical shell acoustic radiation was studied in this paper based on the mechanism of shell vibration to gain the information about its dimension instead of accurate inversion processing. The underwater cylindrical shell vibration and acoustic radiation were first analyzed using mode decomposition to solve the wave equation. The characteristic of acoustic radiation was studied with different cylindrical shell lengths, radii, thickness, excitation points and fine structures. Simulation results show that the intrinsic mode in acoustic radiation spectrum correlates closely with the geometry dimensions of cylindrical shells. Through multifaceted analysis, the strongest intrinsic mode characteristic extracted from underwater shell acoustic radiated signal was most likely relevant to the radiated source radius. Then, partial information about unknown source dimension could be gained from intrinsic mode characteristic in passive sonar applications for underwater target classification. Experimental data processing results verified the effectiveness of the method in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call