Abstract

This paper mainly focuses on the remarkable transient vibration and underwater acoustic radiation when the underwater vehicle changes direction or depth, and a short time Fourier transform signal processing method to evaluate transient vibration and acoustic radiation of steering engine is provided in this paper. Based on the vibration test of the 1:1 experimental scaffold of the steering engine for an underwater vehicle, the transient maximum excitation forces acting at the contact points between steering engine and experimental scaffold are calculated indirectly by the least square method of load identification in frequency domain and the short time Fourier transform signal processing method. The accuracy and feasibility of results are verified. In addition, taking excitation forces as an approximate input, the numerical solution of transient acoustic radiation for a cylindrical shell with ribs of the steering engine room, based on elastic shell theory and fluid–structure interaction theory, is presented. In the simulation, the steering engine room of the underwater vehicle is simplified into a cylindrical shell with two simply supported tips, because a cylindrical shell with ribs is the basic structure-borne used in underwater vehicles. The results show that transient acoustic radiation of the tested steering engine is higher than allowable value, while the evaluation results of another electric steering engine without retarder are suitable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call