Abstract

We fabricated a mesa <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$10\ \mu{\rm m}\times 10\ \mu{\rm m}$</tex></formula> in area and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\sim$</tex></formula> 150 nm in height on a single grain in a 240-nm <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm Bi}_{2}{\rm Sr}_{2}{\rm CaCu}_{2}{\rm O}_{8+\delta}/{\rm MgO}$</tex></formula> thin-film grown by metal-organic decomposition (MOD) with face-to-face annealing. A multi-branch structure peculiar to intrinsic Josephson junctions (IJJs) was observed in the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$I-V$</tex> </formula> characteristics of the fabricated mesa, and this structure was characterized by approximately 100 quasiparticle branches with critical current densities of 1 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm kA/cm}^{2}$</tex> </formula> and voltage-jump intervals of 20 mV. Moreover, the temperature dependence of the critical current was in good agreement with a theoretical result based on <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$c$</tex> </formula> -axis Josephson tunneling in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$d$</tex></formula> -wave superconductors. These results imply that the thin films grown by MOD have sufficient quality to fabricate IJJs for practical terahertz applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.