Abstract
The concept of aquifer vulnerability is certainly useful in the field of groundwater protection. Nevertheless, within the scientific community, the definition of vulnerability is still under debate and lacks standardisation. As a consequence, the methods for evaluating the vulnerability degree are numerous and often lead to conflicting results. Thus, in this study, three methods that are commonly used in groundwater vulnerability assessments due to their easy application (namely DRASTIC, GOD and TOT) were utilised in four areas of the Piedmont region (NW Italy). The results obtained by the different methods were compared and correlated with the nitrate concentrations in the groundwater. The aims of the study were (i) to evaluate the effectiveness of the adopted methods and their comparability, (ii) to discuss the limits of the intrinsic vulnerability methods and (iii) to verify the applicability of nitrate as a tracer in the assessment of groundwater vulnerability or explain the reasons why it is not applicable. It was observed that the three intrinsic vulnerability methods are not able to uniquely identify the most or least vulnerable areas. Additionally, the comparison of the intrinsic vulnerability indexes only occasionally showed a reasonable correlation. Furthermore, there was no clear correlation between the vulnerability indexes and nitrate concentrations in the groundwater. These results could be explained by several reasons: (1) the methods are mostly based on the level of groundwater protection provided by the overlaying lithologies and do not consider the physical processes occurring in the aquifer; (2) the intrinsic vulnerability methods only consider vertical pathways for contaminants, but a pre-existing contaminant could be present in the aquifer; (3) groundwater nitrate concentrations are affected by the nitrate input and surplus; and (4) nitrates are subject to physical and biological attenuation in aquifers and cannot necessarily be considered stable tracers in the assessment of groundwater vulnerability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have