Abstract

Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.