Abstract

We analyze theoretically nonlinear dynamics of an optically injected two-mode quantum dot laser lasing simultaneously from the ground and excited states. We show that although the external optical signal is injected into the ground-state mode alone, it can lead to the generation of regular picosecond pulses and pulse packages in the intensity of the excited-state mode. Generation of regular streams of picosecond pulses is attributed to an intrinsic gain switching mechanism where the relaxation time is modulated by the oscillations in the occupation of the ground and excited energy states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.