Abstract
Focusing on two-dimensional (2D) Janus MoSSe monolayers, we show that simultaneously existing in-plane and out-of-plane intrinsic electric fields cause Zeeman- and Rashba-type spin splitting, respectively. In MoSSe van der Waals (vdW) structures, intrinsic electric field results in a large interlayer band offset. Therefore, large interlayer band offset, being the driving force for interlayer excitons, endows ultralong lifetimes to excitons and might dissociate excitons into free carriers. In comparison to its parent structure (i.e., MoS2), MoSSe vdW structures are rather appealing for new concepts in light-electricity interconversion. In addition, the Rashba effects could be tuned by changing the interlayer distances due to the competition between the intralayer and interlayer electric field. Due to the large band offset, valley polarization relaxation is markedly reduced, promising enhanced valley polarization and ultralong valley lifetimes. As a result, MoSSe vdW structures harbor strong valley-contrasting physics, making them competitive systems to their parent structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.